IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Unique large-time behaviour for solutions to Smoluchowski's coagulation equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 8611
(http://iopscience.iop.org/0305-4470/30/24/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:07

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 8611-8622. Printed in the UK PIl: S0305-4470(97)85716-2

Unique large-time behaviour for solutions to
Smoluchowski’s coagulation equation

Ole J Heilmann

Department of Chemistry, H C @rsted Institute, University of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen @, Denmark

Received 7 July 1997

Abstract. It is proven that the diagonal version of Smoluchowski’'s coagulation equation has
a unigue behaviour for large times, independent of the initial condition. Roughly speaking, the
concentration then goes to zero lags/r, whereb,, is a constant which depends only on the
size of the polymer (and the rate constants). If the rate constants increase sufficiently fast with
molecular size, then the total number of monomer units in solution also goes to zefo. as 1

1. Introduction

In this paper we shall concentrate on a rather special restriction of Smoluchowski's
coagulation equation
Cn = %Knl/lm/zci/z - Km»mcrzn (1)

wherem runs from 1 taco (with K,,/2,,/2 = O if m is odd). Leyvraz [1] was the first to notice
that this class of Smoluchowski’'s coagulation equation has some interesting mathematical
properties; in particular the existence of a stable distribution where all concentrations
decayed as /&, provided the rate constanfs,, ,, increased sufficiently rapidly with.
It is the object of this paper to show that this solution represents the large-time behaviour of
any solution to (1) provided the initial concentrations are non-negative. We shall also give
explicit solutions to (1) for, andcs. The solution fore, will drop out during the proof of
the main theorem (see equations (33)—(37)), while the solutioryfaiill be deferred to the
appendix. The solution for, is rather complicated; however, it does reveal the long-time
behaviour in more detail than theorem 2 below.

The only other case where the general long-time behaviour of Smoluchowski’'s
coagulation equation is known seems to be

1 k—1 o0
ék:échck_j_ck ZCj (2)
j=1 j=1

(Kreer and Penrose [2]). For the similar case where the ikd@nd ;) is considered to be
a continuous variable, Friedlander and Wang [3] have proven an analogous result; however,
their proof is only valid for a limited class of initial distributions. For the additive kernel

. 1 k—1 00
=5 i:Zl(Vj + k)¢ Cj = Ck Zl(rj +71)¢; 3)

j=
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Carr and da Costa [14] have proved the non-existence of solutions»ifj* with o > 1,
which is of course also quite definitive.

So even if the restriction imposed by (1) makes the model quite unrealistic, the results
still seem to be worthwhile, showing how solutions to Smoluchowski’'s coagulation equation
might behave. Also the reactions wheresamer reacts with anothes-mer are important in
the general case because these reactions ensure that all concentrations go to zero irrespective
of the initial conditions.

The outline of this paper is that the main results are reported in the following section in
the form of two lemmas and two theorems, together with the definitions which are needed
to formulate the results. The proofs are given in section 3. Some of the results used during
the proofs of the main theorems are stated as independent lemmas in order to clarify the
structure of the proofs.

2. Main result

First we notice that the system of equations given by (1) falls into separate parts, one for
each odd integer. If we start with = 2n + 1, then the only possible products are those
with the number of monomers equal @ + 1) - 2%, k = 0, 1, .... Each of these separate
systems of equations have the same structure, i.e. if we know how to handle one system,
we can then deal with them all. We shall consequently concentrate on the equations where
m=2k=01,...

Form = 1 equation (1) reads

é1(t) = —Ky1c1(t)? (1a)

with the initial conditionc1(0) = ¢2. (We shall always assumg§ > 0; if ¢ = 0 then the
problem could be reformulated.) The solution t@&)is

1

c1(t) = Kuat +1/0 e (4)
It turns out that the notation becomes simpler if we change the variable to

x =Kyt +1/¢2 (5)
and introduce

Ye(x) = c () (6)

o = Ko 20 /K11 (7)

wherek runs from 0 toco. With this notation we get the following form of the differential
equation (1)

dyc(x) 1

o - éak—lyk—l(x)z — oy (x)? (8)
with the initial condition
vi(L/eD) = 0 = c2(0) > 0. ©
The solution given by equation (4) becomes
Yo(x) = 1/x. (10)

We define numbers; recursively by
_ 1+ [1 + 20[](_10(/()\]%_1] 1/2

r=1 Ak o
k

k=123, .... (11)
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It is easily seen that the set of functions
Yie(x) = A /x k=012,... (12)

together constitute a consistent solution to (8) (Leyvraz [1]). It will not generally satisfy
the initial conditions given by (9), but we shall prove that (12) gives the limiting large-time
behaviour in any case.

Condition 1. If the sum

o0

> 128 jeu]? (13)

k=0
is finite, then we shall say that condition 1 is satisfied.

The importance of condition 1 is shown by the following lemma.

Lemma 1. Condition 1 is a necessary and sufficient condition for the sum
> 20 = Ao (14)
k=0

to be finite. If condition 1 is satisfied then the behavioun.pffor largek is related to the
behaviour ofw; by

- ozk2’<

whereg, goes to zero a8 — oo. More precisely

A7 1—e) (15)

1 i 4
G=— 3 2. (16)
Ao j=k+1

We shall give the proof in the next section. Leyvraz [1] used the condition
o > C2HH (17)

for some strictly positive constan& andé to secure that the sum in equation (14) is finite.
It is easily seen that this condition implies condition 1.

Condition 2. If the sum

i[z" Jo]Y? Ink (18)

k=0
is finite, then we shall say that condition 2 is satisfied.

Theorem 2. We have for allk and all initial conditions (9)
lim |xye(x) — Akl = 0. (29)
X—>00

If condition 2 is satisfied then the convergence is unifornt.in

We define the generating functiofi(y, x), by
fO.x) =)y ). (20)
k=0

The nth moment of the distribution is given bg(2", x). In particular, the total number of
monomer units is equal t@ (2, x).
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Theorem 3. If condition 1 is satisfied then
lim |xf(2,x) — Ag| = 0. (21)

We shall give the proofs of theorem 2 and 3 in the next section. Buffet ar&l [Bll
proved that condition 1 is sufficient for gelation using a technique which is very different
from the method used in this paper.

If we definer. as the gelation time, the time whey&2, x) starts to decay, then we
have the following lemma.

Lemma 4. If K > 0 andyp > 2 are chosen such that < Ky’(j fork=0,12, ..., then
1
te > o1 : (22)
K11K f(y0,1/c)) (550 — 1)
3. Proofs of lemma 1, theorems 2 and 3 and lemma 4
Proof of lemma 1We obtain from equation (11)
1/2
A = [ak_l} Ak—1 (23)
20[k

and by repeated application of (23)

M > 272 M2, (24)

This clearly shows that condition 1 is necessary if the sum in equation (14) is finite.
To prove the sufficiency of condition 1 we write

1 oy 172
M — 4+ — | M1 (25)
o (0773

Repeated application of this inequality yields
k
A < [2k_jakaj]_l/2.
j=0
Substituting into (14) we get

o0

0 00 k 00
D20 <Y 25l YP Y 127 ] <Y 128 ] MY T2 ey
k=0 k=0 j=0 k=0 j=0

We have thus proved that condition 1 is sufficient.
To prove the estimate in equation (15) we write equation (11) as
_ _ iL 2 _ 2
)Lk = 20[1(_1)\.](_1 Olk)\.k.
Multiplying with y* and summing ork gives

oo 1 o0
k k 2
- VAL = (y—l) Yooy
The left-hand side certainly convergesyf < 2 and condition 1 is satisfied. Consequently,

this is also the case for the right-hand side. Dividing both sidesélyy— 1), expanding
1- %y)*1 in powers ofy and equating equal powers gfon both sides we obtain

k
2753 "2 =l
j=0

which easily produces the desired result. d
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Lemma 5. (General properties of the differential equation (&pnsider the differential
equation

d
];ff) =) —d’f(0)2  f(xo)=fo=0 (26)

for x > xo. Assuming thafg(x) is uniformly bounded forx > xo, we have the following.
(i) The solution f(x) exists and is unique, non-negative and uniformly bounded for
X = Xop.
(ii) Let f1(x) be the solution to (26) witlg;(x) in place ofg(x). If g1(x)? < g(x)? for
x > xo then fi(x) < f(x) for x > xo. If g1(x)? > g(x)? for x > xq then f1(x) > f(x) for
X = Xp.
(i) Let f>(x) be the solution to (26) with the initial conditiof,(xg) = b > 0. If
b > fo, then fo2(x) > f(x). If b < fo, then fo(x) < f(x).

Proof. The local existence and uniqueness of the solution is standard from the theory of
differential equations. That the solution is bounded and stays non-negative follows trivially
from the form of the differential equation. The fact thatis bounded in turn implies that

the solution can be extended to all higher(iii) follows trivially from the uniqueness and

(ii) follows easily from the form of the differential equation. O

Lemma 6. The solution to the differential equation

d];ff) =b?/x* — a®f(x)? fxo)=fo=0 27)
is given by
O+ AL (xo/x)f
T = A+ Ao/ )
where
14 [1 + 4a?p?]V2
L= 1ER AT 29)
£ =[1 + 4a?b?)V/? (30)
and
A = (&4 — x0f0)/(x0fo — ¢-). (31)

Proof. It is easily seen thaf (x) given by equation (28) satisfies the initial condition. To
see that it also satisfies the differential equation one can start by wifting = g(x)/x.
The differential equation fog is then solved by noticing that, are the solutions to the
following quadratic equation

a’z2—7—-b>=0. (32)
O

Corollary. One has

M+ Ao1(Kp1cdt + 1) Ay

33
(K11t + /D1 + (K169t + 1)~ Aq] (33)

co(t) =
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where
K114 [K$; +2K11K25]"? (34)
1 =
2K22
K11 — [K?, + 2K11K22]Y?
)»_1 _ 1,1 [ 1,1 1,1 2,2] (35)
2K2’2
v =[1+42K,,/K11]"? (36)
and
Alc(l) - cg
A= 2. 37
1= (37)
Lemma 7. Putno = 1/c and define recursively fot = 1,2, ...
_ if y2=0
_ T]k. 1 . . Vko (38)
min{n—1, /vy } if y, > 0.
Then for allx > 1/¢§ andk > 0
Ye(x) < A/ (x —no + me)- (39)

Proof. For k = 0O it follows from equations (10) and (11) that one has equality in (39).
We proceed by induction ok. If (39) holds fork = j — 1 and we solve

dg(x) 1 |: k-1 :|2 2
o = T | — | — 40
dx 20[, 1 ()C _ nO + njfl) Ot,g(x) ( )
for g(x) with the initial condition

g(1/cd) =y}

then by lemma 5 part (ii) we shall get an upper bound/gw). The definition (38) implies
that this is not changed if we changg 1 to n; in (40). If we change the initial condition
to

g(1/cd) = max(y, &;/nj-1)

then lemma 5 part (jii) implies that remains an upper bound gn(x). But now we have
transformed the problem such that the solution is

g(x) =A;/(x —no+mn;).

Thus, the inequality (39) holds fdr= j if it holds for k = j — 1. |
Corollary.
XY (0) = A < A/ (Kpaedn). (41)
Proof.
() —dp € — g Ty o M
X — 1o+ Nk X —MNo X — 1o
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Lemma 8. For anye > 0 and anyz > 0 one can find an, such that
)‘n —XVn (.X) g )\né (42)
for x > x,. If condition 2 is satisfied then, can be chosen independentmof

Proof. We start by choosing’
€ = 6¢/m? (43)
and
Xg = 1/0(1) apg=1. (44)
We then definep, ¢_i, v, xx anday recursively fork = 1,2, ... by
1+ [1+ Zak,laka,ffl] 12

‘ o (45)
_ 2 1172
b= 1-[1+ 2(;;;1051((1,(_1] (46)
v = [1 + 204 _joa? ;Y (47)
X = xp_a[k% /€™ (48)
ar = (L —€'/K%). (49)
Finally, we define functionsf; andg,(k =1,2,...)
0 X < Xp-1
fix) = [ &1 — (xe—1/x)™] M (50)
X[ — (Px/d-1) (xx—1/x)"]
0 X < X
gr(x) = {ak/x > . (51)

First we want to show thag, (x) < fi(x) for all x. Forx < x; this is trivial. It follows
from equation (46) thap_, is negative. Consequently, we have fop> x;

Fe() = Gl — (/0™ /x = gull — €K% x = ay/x
where we have used equations (48) and (49). This provesgtidat < fi(x). It follows
from lemma 5 and equations (45)—(47) thitis the solution to

d 1
fdk;EX) = éakflgkfl(x)z — oy fi(x)?

with the initial conditionfk(l/c‘lj) = 0 for k > 1 and thatf;(x) = y(x) if the initial
condition isy? = 0. Combining it all with lemma 5 we find that

gk(x) < fi(x) < () for x > 1/c5.
The next step is to get a bound ap We introduceg; by
ar = M (1 — &) (52)

and obtain (using the shorthand notatioe= A;_; /20, ;)
1+ [14 01— -2
1+ 1+ b2V2

D = Ak

o lh P(1- (- €1)?)
T A+ YA+ P2+ 1+ 621 — )PP
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|: _ b€r_1(2 — €x_1)
S R Y Y

:| = [l — €]
or
& < €1+ €k

Iterating this we get
k
ek<Ze//j2<e. (53)
j=1

This proves the first half of the lemma.
Taking equations (47), (52), (53) and (23) together we find

Vi = ag—1y/ 2010 = (1 — €)dp_1y/ 20100 = 2(1 — €)y/ o /25

We can iterate equation (48), using the above

k k
1 1
Inx; = 9 E —Inj—In¢ E —
xe=InA/c7) +2 2 Inj—1Ine 2.
j=1 J j=1 J
oo

1 & Ine’ .
<In(t/cd) + 1< ,; In j[27 fo;]"% — 21— o) ;[2"/051‘]1/2.

If condition 2 is satisfied then the two sums in the last line are finite and we can use the
value of this line to get a value for ky which is independent of. |

The corollary to lemma 7 together with lemma 8 implies theorem 2.

Proof of theorem 3.If condition 2 is satisfied then the uniform convergence assured by
theorem 2 implies theorem 3. If we only have condition 1, we use lemma 1 to secure that
we can find am such that

o0
o 2u<e)2
k=n+1

and then use theorem 2 to determinesuch that
1
lxye — Al < éé/l\o
for k < n andx > x,. This will then ensure that far > x,

|[xpa(x) — Aol < e.

O
Proof of lemma 4We start by defining truncated generating functions
Fnox) =" ¥ o) (54)
=0
gn (%) =Y Yol (0] (55)
k=0

Multiplying equation (8) withy* and summing from O ta: we obtain

dfu(r,x) 1 1
% = éygmfl(yv x) = 8gm(y,x) < <2y - 1) gm(y, x). (56)
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Using the conditions of the lemma we have

m m 2
gn(y,X) <K Y (o’ In)PP < K {Z(yyowzyk(x)} : (57)
k=0 k=0

Choosingy = yo and combining the two inequalities we get

df,. (vo, 1

Integrating this inequality yields

i o << (1) ()
- S 50— xX——=5]-
Fn (0. 1/ fu(yo, %) 2" 0
Re-ordering this we obtain

1 1 1\
In(0, ) < [fm@o, 1/9) (2”_ l) K (x - cgﬂ '

Assuming £ (yo, 1/c9) to be finite we can take the limit — oo on the right-hand side,
and then, since the right-hand side now is independent,afie can also take the limit on
the left-hand side. As a result we find thafyg, x) is bounded if

1 -1
(= 1) < [f(yo, 19K <2yo - 1)] .

If f(yo,x) is bounded, then it follows from equation (57) thaty, x) is bounded. Since
yo > 2 we find thatg(2, x) is finite. If we take the limitm — oo in equation (56) with
y = 2 we finally find thatf (2, x) is constant. O

4. Discussion

The most remarkable result is theorem 2, which states that therlasgeaviour is completely
independent of the initial condition to the leading orderih. We have not proved, but we
believe that the left-hand side of equation (19) goes to zero faster:thams is the case
with c,(¢) (equation (33)) and4(z) (equation (A23)). The initial monomer concentration
enters only as a shift of the time axis (equation (5)). It should be emphasized that the
limiting =1 behaviour holds for all values of the rate constants, i.e. also when there is no
gelation. The difference between the models with and without gelation comes only in the
uniformity in polymer size of the convergence as stated in the last line of theorem 2. It is
not clear to the author whether the necessity for introducing condition 2 is just technical
or there actually is a small region (between condition 1 and condition 2) where one has
gelation, but not the uniform convergence.

Buffet and Pug [5] proved that one has no gelation if the sum

> 2 (58)
k=0

is finite. This is slightly better than the result by White [6], which requires thais
bounded byA - 2¢ for some constan#. However, it still leaves a small undecided gap up
to condition 1. In view of lemma 1, it seems most likely that condition 1 is both sufficient
and necessary for gelation.

The result in lemma 4 is similar to the result obtained by Hendeikal [7] for some
other classes of Smoluchowski’'s coagulation equation. It should, in particular, be noticed
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that it excludes instant gelation irrespective of the initial condition for all values of the rate
constant for the diagonal version of Smoluchowski’'s coagulation, in contrast to the result
by Carr and da Costa [4] for some other versions.

Appendix
In this appendix we shall find the explicit solutier(z). Our starting point is equation (8)

%yz(x) = %am(x)z — azy2(x)° (A1)
with y1(x) given by the corollary to lemma 5
A+ Ao1Ag(cdx)™"
x(1+ A1)
v=y1t2n A= (1 0)/(u). (A3)

If A; = 0, then the problem is the same as when we solved/forWe shall therefore
assume thati; # 0. We start by changing the variable fo

(A2)

ri(x) =

y = =A™ (A4)
and introduce two new functiong and g,
A — A
§10) =¥y = H = (A5)
-y
g2(y) = xy2(x). (AB)
This leads to the following differential equation in place of (Al)
d 1 1
g0 = | e2g2(9)? — g2(y) — Seagi(»)? | (A7)
dy vy 2

Equation (A7) is a differential equation of the Ricatti type (see Kamke [8], section 4.9). It
can be transformed into a linear, second-order homogeneous differential equation
dPu(y) 14v1du(y) a0
2 T 5 T 5,228
dy v y dy 2v%y
where the relation betweanand g, is such that ifu(y) is any solution to (A8), then one
can find a solution to (A7) by

d
g2(y) = —[ Z(y)}/[u(y)az] (A9)
y vy

Equation (A8) can be transformed into a differential equation for hypergeometric functions
by the substitution

"?u(y) =0 (A8)

u(y) = y"(L—y)*h(y) (A10)

with the right choice ofp andg. The desired form is (E&lyi et al [9] equation (2.1.1))
d?h dh
y(l—y)ﬁ—i-[c—(a—i-b—i—l)y]ﬁ—abh(y):O. (A11)
dy? dy
This obtained, we require
1 22
pp—D 4~ YV, Mg (AL2)
202
gg—-1D -2 =0 (A13)

20 1
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We choose the solutions

p= —2—]]')(1 + [1 4 2030003]72) (A14)

q= % + %[1 + 20 /1], (A15)
This leads to the following differential equation far

d?h 1+v dh
yd—=y) (2y)+ 2p(l—y)—2qy + 1=y )
dy v dy
1+v o
- |:2P6] t—,at %2)»1()»1 - )»1)] h(y) = 0. (A16)

Comparing with equation (A11) we obtain, using equation (A3),

1 1 1/2
c=1—v[1+a2:irl] (A17)
a+b=2p+2g+1/v=c+[1+20/a1]*? (A18)
ab = qc 4+ axhy/v (A19)
al 1 1 1 V177201 v—17"2
="4+2[1+2 2~ 11 + |1 ) A20
b} o + ol t /el 21)[ +“2u—1] 2 7T 1 (A20)

In general it is possible, but not necessary, that one or more of the numbigrs, ¢ — a
andc — b are integers. In order not to complicate the situation, we shall assume that none
of them are integers. In that case the full solution to (A16) can be writtere(fret al [9]
equation (2.3.1))

h(y) = BiF(a,b;c; y) + Boyy “Fla—c+1,b—c+1;2—c;y)  (A21)

where B; and B, are two arbitrary constants. The derivative is given by &ndet al [9]
equation (2.1.7))
dh b
% = Bla—F(a—i-l,b—l—l;c-l—l;y)+Bz(1—c)y_‘F(a—c+1,b—c+1;2—c;y)

y C

— b — 1
Bz(a c+D0b—c+ )yHF(a
2—c¢

Using equations (A6), (A9), (A10) anthb = —vp/a, we obtain

1[ qv y _vydh(y)/dy].

—c+2,b—c+2,3—-c;y). (A22)

Yo(x) = — Ao+ — ——
2 x| axl—y a2 h(y)

The ratioB1/ B is fixed by the initial condition (9), using equation (A4) which implies that
x = 1/c‘f corresponds to = —A;. The behaviour for — oo (or x — o0) is according

to equation (A4) given by the behaviour for— 0. The first term in (A23) is the term
expected from theorem 2. The second term goes to zeno'asnd that will also be the
case for the third term if < 0 (unlessB; = 0, which will make the third term decay faster
than the second term). &> 0, then the third term goes to zero &s”, wherev; is given

by

(A23)

Vo = [l + 20{1062)\%] Y2 (A24)

unlessB, = 0 (in which case the decay as" is retained). Ifc = 0, then the solution given

by equations (A21) and (A22) can no longer be used. A more detailed analys&yErd

et al [9] chapter 2; in particular, equations (2.3.6), (2.3.7), (2.1.7) and (2.3.2)) reveals that
the third term behaves as™ In(x) (again with a possible exception caused by the initial
condition which could make the logarithmic term drop out).
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