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Abstract. It is proven that the diagonal version of Smoluchowski’s coagulation equation has
a unique behaviour for large times, independent of the initial condition. Roughly speaking, the
concentration then goes to zero asbm/t , wherebm is a constant which depends only on the
size of the polymer (and the rate constants). If the rate constants increase sufficiently fast with
molecular size, then the total number of monomer units in solution also goes to zero as 1/t .

1. Introduction

In this paper we shall concentrate on a rather special restriction of Smoluchowski’s
coagulation equation

ċm = 1
2Km/2,m/2c

2
m/2−Km,mc2

m (1)

wherem runs from 1 to∞ (withKm/2,m/2 = 0 if m is odd). Leyvraz [1] was the first to notice
that this class of Smoluchowski’s coagulation equation has some interesting mathematical
properties; in particular the existence of a stable distribution where all concentrations
decayed as 1/t , provided the rate constantsKm,m increased sufficiently rapidly withm.
It is the object of this paper to show that this solution represents the large-time behaviour of
any solution to (1) provided the initial concentrations are non-negative. We shall also give
explicit solutions to (1) forc2 andc4. The solution forc2 will drop out during the proof of
the main theorem (see equations (33)–(37)), while the solution forc4 will be deferred to the
appendix. The solution forc4 is rather complicated; however, it does reveal the long-time
behaviour in more detail than theorem 2 below.

The only other case where the general long-time behaviour of Smoluchowski’s
coagulation equation is known seems to be

ċk = 1

2

k−1∑
j=1

cj ck−j − ck
∞∑
j=1

cj (2)

(Kreer and Penrose [2]). For the similar case where the indexk (andj ) is considered to be
a continuous variable, Friedlander and Wang [3] have proven an analogous result; however,
their proof is only valid for a limited class of initial distributions. For the additive kernel

ċk = 1

2

k−1∑
j=1

(rj + rk+j )cj ck−j − ck
∞∑
j=1

(rj + rk)cj (3)
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Carr and da Costa [14] have proved the non-existence of solutions ifrj > jα with α > 1,
which is of course also quite definitive.

So even if the restriction imposed by (1) makes the model quite unrealistic, the results
still seem to be worthwhile, showing how solutions to Smoluchowski’s coagulation equation
might behave. Also the reactions where anm-mer reacts with anotherm-mer are important in
the general case because these reactions ensure that all concentrations go to zero irrespective
of the initial conditions.

The outline of this paper is that the main results are reported in the following section in
the form of two lemmas and two theorems, together with the definitions which are needed
to formulate the results. The proofs are given in section 3. Some of the results used during
the proofs of the main theorems are stated as independent lemmas in order to clarify the
structure of the proofs.

2. Main result

First we notice that the system of equations given by (1) falls into separate parts, one for
each odd integer. If we start withm = 2n + 1, then the only possible products are those
with the number of monomers equal to(2n+ 1) · 2k, k = 0, 1, . . .. Each of these separate
systems of equations have the same structure, i.e. if we know how to handle one system,
we can then deal with them all. We shall consequently concentrate on the equations where
m = 2k, k = 0, 1, . . ..

Form = 1 equation (1) reads

ċ1(t) = −K1,1c1(t)
2 (1a)

with the initial conditionc1(0) = c0
1. (We shall always assumec0

1 > 0; if c0
1 = 0 then the

problem could be reformulated.) The solution to (1a) is

c1(t) = 1

K1,1t + 1/c0
1

. (4)

It turns out that the notation becomes simpler if we change the variable to

x = K1,1t + 1/c0
1 (5)

and introduce

γk(x) = c2k (t) (6)

αk = K2k ,2k /K1,1 (7)

wherek runs from 0 to∞. With this notation we get the following form of the differential
equation (1)

dγk(x)

dx
= 1

2
αk−1γk−1(x)

2− αkγk(x)2 (8)

with the initial condition

γk(1/c
0
1) = γ 0

k = c2k (0) > 0. (9)

The solution given by equation (4) becomes

γ0(x) = 1/x. (10)

We define numbersλk recursively by

λ0 = 1 λk =
1+ [1+ 2αk−1αkλ

2
k−1]1/2

2αk
k = 1, 2, 3, . . . . (11)
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It is easily seen that the set of functions

γk(x) = λk/x k = 0, 1, 2, . . . (12)

together constitute a consistent solution to (8) (Leyvraz [1]). It will not generally satisfy
the initial conditions given by (9), but we shall prove that (12) gives the limiting large-time
behaviour in any case.

Condition 1. If the sum
∞∑
k=0

[2k/αk]
1/2 (13)

is finite, then we shall say that condition 1 is satisfied.

The importance of condition 1 is shown by the following lemma.

Lemma 1. Condition 1 is a necessary and sufficient condition for the sum
∞∑
k=0

2kλk = 30 (14)

to be finite. If condition 1 is satisfied then the behaviour ofλk for largek is related to the
behaviour ofαk by

λ2
k =

30

αk2k
(1− εk) (15)

whereεk goes to zero ask→∞. More precisely

εk = 1

30

∞∑
j=k+1

2jλj . (16)

We shall give the proof in the next section. Leyvraz [1] used the condition

αk > C2k+kδ (17)

for some strictly positive constantsC andδ to secure that the sum in equation (14) is finite.
It is easily seen that this condition implies condition 1.

Condition 2. If the sum
∞∑
k=0

[2k/αk]
1/2 ln k (18)

is finite, then we shall say that condition 2 is satisfied.

Theorem 2. We have for allk and all initial conditions (9)

lim
x→∞ |xγk(x)− λk| = 0. (19)

If condition 2 is satisfied then the convergence is uniform ink.

We define the generating function,f (y, x), by

f (y, x) =
∞∑
k=0

ykγk(x). (20)

Thenth moment of the distribution is given byf (2n, x). In particular, the total number of
monomer units is equal tof (2, x).
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Theorem 3. If condition 1 is satisfied then

lim
x→∞ |xf (2, x)−30| = 0. (21)

We shall give the proofs of theorem 2 and 3 in the next section. Buffet and Pulé [5]
proved that condition 1 is sufficient for gelation using a technique which is very different
from the method used in this paper.

If we define tc as the gelation time, the time wheref (2, x) starts to decay, then we
have the following lemma.

Lemma 4. If K > 0 andy0 > 2 are chosen such thatαk 6 Kyk0 for k = 0, 1, 2, . . . , then

tc >
1

K1,1Kf (y0, 1/c0
1)(

1
2y0− 1)

. (22)

3. Proofs of lemma 1, theorems 2 and 3 and lemma 4

Proof of lemma 1.We obtain from equation (11)

λk >
[
αk−1

2αk

]1/2

λk−1 (23)

and by repeated application of (23)

λk > 2−k/2α−1/2
k . (24)

This clearly shows that condition 1 is necessary if the sum in equation (14) is finite.
To prove the sufficiency of condition 1 we write

λk 6
1

αk
+
[
αk−1

αk

]1/2

λk−1. (25)

Repeated application of this inequality yields

λk 6
k∑

j=0

[2k−jαkαj ]−1/2.

Substituting into (14) we get
∞∑
k=0

2kλk 6
∞∑
k=0

[2k/αk]
1/2

k∑
j=0

[2j /αj ]
1/2 6

∞∑
k=0

[2k/αk]
1/2

∞∑
j=0

[2j /αj ]
1/2.

We have thus proved that condition 1 is sufficient.
To prove the estimate in equation (15) we write equation (11) as

−λk = 1

2
αk−1λ

2
k−1− αkλ2

k.

Multiplying with yk and summing onk gives

−
∞∑
k=0

ykλk =
(

1

2
y − 1

) ∞∑
k=0

ykαkλ
2
k.

The left-hand side certainly converges if|y| < 2 and condition 1 is satisfied. Consequently,
this is also the case for the right-hand side. Dividing both sides by( 1

2y − 1), expanding
(1− 1

2y)
−1 in powers ofy and equating equal powers ofy on both sides we obtain

2−k
k∑

j=0

λj2
j = αkλ2

k

which easily produces the desired result. �
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Lemma 5. (General properties of the differential equation (8)).Consider the differential
equation

df (x)

dx
= g(x)2− a2f (x)2 f (x0) = f0 > 0 (26)

for x > x0. Assuming thatg(x) is uniformly bounded forx > x0, we have the following.
(i) The solutionf (x) exists and is unique, non-negative and uniformly bounded for

x > x0.
(ii) Let f1(x) be the solution to (26) withg1(x) in place ofg(x). If g1(x)

2 6 g(x)2 for
x > x0 thenf1(x) 6 f (x) for x > x0. If g1(x)

2 > g(x)2 for x > x0 thenf1(x) > f (x) for
x > x0.

(iii) Let f2(x) be the solution to (26) with the initial conditionf2(x0) = b > 0. If
b > f0, thenf2(x) > f (x). If b < f0, thenf2(x) < f (x).

Proof. The local existence and uniqueness of the solution is standard from the theory of
differential equations. That the solution is bounded and stays non-negative follows trivially
from the form of the differential equation. The fact thatf is bounded in turn implies that
the solution can be extended to all higherx. (iii) follows trivially from the uniqueness and
(ii) follows easily from the form of the differential equation. �

Lemma 6. The solution to the differential equation

df (x)

dx
= b2/x2− a2f (x)2 f (x0) = f0 > 0 (27)

is given by

f (x) = ζ+ + Aζ−(x0/x)
ξ

x[1+ A(x0/x)ξ ]
(28)

where

ζ± = 1± [1+ 4a2b2]1/2

2a2
(29)

ξ = [1+ 4a2b2]1/2 (30)

and

A = (ζ+ − x0f0)/(x0f0− ζ−). (31)

Proof. It is easily seen thatf (x) given by equation (28) satisfies the initial condition. To
see that it also satisfies the differential equation one can start by writingf (x) = g(x)/x.
The differential equation forg is then solved by noticing thatζ± are the solutions to the
following quadratic equation

a2z2− z − b2 = 0. (32)

�

Corollary. One has

c2(t) = λ1+ λ−1(K1,1c
0
1t + 1)−νA1

(K1,1t + 1/c0
1)[1+ (K1,1c

0
1t + 1)−νA1]

(33)
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where

λ1 =
K1,1+ [K2

1,1+ 2K1,1K2,2]1/2

2K2,2
(34)

λ−1 =
K1,1− [K2

1,1+ 2K1,1K2,2]1/2

2K2,2
(35)

ν = [1+ 2K2,2/K1,1]1/2 (36)

and

A1 = λ1c
0
1 − c0

2

c0
2 − λ−1c

0
1

. (37)

Lemma 7. Put η0 = 1/c0
1 and define recursively fork = 1, 2, . . .

ηk =
{
ηk−1 if γ 0

k = 0

min{ηk−1, λk/γ
0
k } if γ 0

k > 0.
(38)

Then for allx > 1/c0
1 andk > 0

γk(x) 6 λk/(x − η0+ ηk). (39)

Proof. For k = 0 it follows from equations (10) and (11) that one has equality in (39).
We proceed by induction onk. If (39) holds fork = j − 1 and we solve

dg(x)

dx
= 1

2
αj−1

[
λk−1

(x − η0+ ηj−1)

]2

− αjg(x)2 (40)

for g(x) with the initial condition

g(1/c0
1) = γ 0

j

then by lemma 5 part (ii) we shall get an upper bound onγj (x). The definition (38) implies
that this is not changed if we changeηj−1 to ηj in (40). If we change the initial condition
to

g(1/c0
1) = max{γ 0

j , λj /ηj−1}
then lemma 5 part (iii) implies thatg remains an upper bound onγj (x). But now we have
transformed the problem such that the solution is

g(x) = λj/(x − η0+ ηj ).
Thus, the inequality (39) holds fork = j if it holds for k = j − 1. �

Corollary.

xγk(x)− λk 6 λk/(K1,1c
0
1t). (41)

Proof.

xγk(x)− λk 6 xλk

x − η0+ ηk − λk 6
xλk

x − η0
− λk = λkη0

x − η0
.

�
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Lemma 8. For anyε > 0 and anyn > 0 one can find anxn such that

λn − xγn(x) 6 λnε (42)

for x > xn. If condition 2 is satisfied thenxn can be chosen independent ofn.

Proof. We start by choosingε′

ε′ = 6ε/π2 (43)

and

x0 = 1/c0
1 a0 = 1. (44)

We then defineφk, φ−k, νk, xk andak recursively fork = 1, 2, . . . by

φk =
1+ [1+ 2αk−1αka

2
k−1]1/2

2αk
(45)

φ−k =
1− [1+ 2αk−1αka

2
k−1]1/2

2αk
(46)

νk = [1+ 2αk−1αka
2
k−1]1/2 (47)

xk = xk−1[k2/ε′]1/νk (48)

ak = φk(1− ε′/k2). (49)

Finally, we define functions,fk andgk(k = 1, 2, . . .)

fk(x) =


0 x 6 xk−1

φk[1− (xk−1/x)
νk ]

x[1− (φk/φ−k)(xk−1/x)νk ]
x > xk−1

(50)

gk(x) =
{

0 x < xk

ak/x x > xk.
(51)

First we want to show thatgk(x) 6 fk(x) for all x. For x < xk this is trivial. It follows
from equation (46) thatφ−k is negative. Consequently, we have forx > xk

fk(x) > φk[1− (xk−1/xk)
νk ]/x = φk[1− ε′/k2]/x = ak/x

where we have used equations (48) and (49). This proves thatgk(x) 6 fk(x). It follows
from lemma 5 and equations (45)–(47) thatfk is the solution to

dfk(x)

dx
= 1

2
αk−lgk−1(x)

2− αkfk(x)2

with the initial conditionfk(1/c0
1) = 0 for k > 1 and thatfl(x) = γl(x) if the initial

condition isγ 0
l = 0. Combining it all with lemma 5 we find that

gk(x) 6 fk(x) 6 γk(x) for x > 1/c0
1.

The next step is to get a bound onak. We introduceεk by

ak = λk(1− εk) (52)

and obtain (using the shorthand notationb = λk−l
√

2αk−lαk)

φk = λk 1+ [1+ b2(1− εk−1)
2]1/2

1+ [1+ b2]1/2

= λk
[

1− b2(1− (1− εk−1)
2)

(1+ [1+ b2]1/2)([1+ b2]1/2+ [1+ b2(1− εk−1)2]1/2)

]
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> λk
[

1− b2εk−1(2− εk−1)

b(b + b(1− εk−1))

]
= λk[1− εk−1]

or

εk 6 εk−1+ ε′/k2.

Iterating this we get

εk 6
k∑

j=1

ε′/j2 6 ε. (53)

This proves the first half of the lemma.
Taking equations (47), (52), (53) and (23) together we find

νk > ak−1

√
2αk−1αk > (1− ε)λk−1

√
2αk−1αk > 2(1− ε)

√
αk/2k.

We can iterate equation (48), using the above

ln xk = ln(1/c0
1)+ 2

k∑
j=1

1

νj
ln j − ln ε′

k∑
j=1

1

νj

6 ln(1/c0
1)+

1

1− ε
∞∑
j=1

ln j [2j /αj ]
1/2− ln ε′

2(1− ε)
∞∑
j=1

[2j /αj ]
1/2.

If condition 2 is satisfied then the two sums in the last line are finite and we can use the
value of this line to get a value for lnxk which is independent ofk. �

The corollary to lemma 7 together with lemma 8 implies theorem 2.

Proof of theorem 3.If condition 2 is satisfied then the uniform convergence assured by
theorem 2 implies theorem 3. If we only have condition 1, we use lemma 1 to secure that
we can find ann such that

∞∑
k=n+1

2kλk 6 ε/2

and then use theorem 2 to determinexn such that

|xγk − λk| 6 1

2
ε/30

for k 6 n andx > xn. This will then ensure that forx > xn
|xµ1(x)−30| 6 ε.

�
Proof of lemma 4.We start by defining truncated generating functions

fm(y, x) =
m∑
k=0

ykγk(x) (54)

gm(y, x) =
m∑
k=0

ykαk[γk(x)]
2. (55)

Multiplying equation (8) withyk and summing from 0 tom we obtain

dfm(y, x)

dx
= 1

2
ygm−1(y, x)− gm(y, x) 6

(
1

2
y − 1

)
gm(y, x). (56)
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Using the conditions of the lemma we have

gm(y, x) 6 K
m∑
k=0

(yy0)
2|γk(x)|2 6 K

[
m∑
k=0

(yy0)
k/2γk(x)

]2

. (57)

Choosingy = y0 and combining the two inequalities we get

dfm(y0, x)

dx
6 K

(
1

2
y0− 1

)
[fm(y0, x)]

2.

Integrating this inequality yields

1

fm(y0, 1/c0
1)
− 1

fm(y0, x)
6 K

(
1

2
y0− 1

)(
x − 1

c0
1

)
.

Re-ordering this we obtain

fm(y0, x) 6
[

1

fm(y0, 1/c0
1)
−
(

1

2
y0− 1

)
K

(
x − 1

c0
1

)]−1

.

Assumingf (y0, 1/c0
1) to be finite we can take the limitm → ∞ on the right-hand side,

and then, since the right-hand side now is independent ofm, we can also take the limit on
the left-hand side. As a result we find thatf (y0, x) is bounded if

(x − 1/c0
1) <

[
f (y0, 1/c0

1)K

(
1

2
y0− 1

)]−1

.

If f (y0, x) is bounded, then it follows from equation (57) thatg(y0, x) is bounded. Since
y0 > 2 we find thatg(2, x) is finite. If we take the limitm → ∞ in equation (56) with
y = 2 we finally find thatf (2, x) is constant. �

4. Discussion

The most remarkable result is theorem 2, which states that the larget behaviour is completely
independent of the initial condition to the leading order int−1. We have not proved, but we
believe that the left-hand side of equation (19) goes to zero faster thant−1 as is the case
with c2(t) (equation (33)) andc4(t) (equation (A23)). The initial monomer concentration
enters only as a shift of the time axis (equation (5)). It should be emphasized that the
limiting t−1 behaviour holds for all values of the rate constants, i.e. also when there is no
gelation. The difference between the models with and without gelation comes only in the
uniformity in polymer size of the convergence as stated in the last line of theorem 2. It is
not clear to the author whether the necessity for introducing condition 2 is just technical
or there actually is a small region (between condition 1 and condition 2) where one has
gelation, but not the uniform convergence.

Buffet and Puĺe [5] proved that one has no gelation if the sum
∞∑
k=0

2k/αk (58)

is finite. This is slightly better than the result by White [6], which requires thatαk is
bounded byA · 2k for some constantA. However, it still leaves a small undecided gap up
to condition 1. In view of lemma 1, it seems most likely that condition 1 is both sufficient
and necessary for gelation.

The result in lemma 4 is similar to the result obtained by Hendrikset al [7] for some
other classes of Smoluchowski’s coagulation equation. It should, in particular, be noticed



8620 O J Heilmann

that it excludes instant gelation irrespective of the initial condition for all values of the rate
constant for the diagonal version of Smoluchowski’s coagulation, in contrast to the result
by Carr and da Costa [4] for some other versions.

Appendix

In this appendix we shall find the explicit solutionc4(t). Our starting point is equation (8)

d

dx
γ2(x) = 1

2
α1γ1(x)

2− α2γ2(x)
2 (A1)

with γ1(x) given by the corollary to lemma 5

γ1(x) = λ1+ λ−1A1(c
0
1x)
−ν

x(1+ A1(c
0
1x)
−ν)

. (A2)

ν =
√

1+ 2α1 λ±1 = (1± ν)/(2α1). (A3)

If A1 = 0, then the problem is the same as when we solved forγ1. We shall therefore
assume thatA1 6= 0. We start by changing the variable toy

y = −A1(c
0
1x)
−ν (A4)

and introduce two new functionsg1 andg2

g1(y) = xγ1(x) = λ1− λ−1y

1− y (A5)

g2(y) = xγ2(x). (A6)

This leads to the following differential equation in place of (A1)

d

dy
g2(y) = 1

νy

[
α2g2(y)

2− g2(y)− 1

2
α1g1(y)

2

]
. (A7)

Equation (A7) is a differential equation of the Ricatti type (see Kamke [8], section 4.9). It
can be transformed into a linear, second-order homogeneous differential equation

d2u(y)

dy2
+ 1+ ν

ν

1

y

du(y)

dy
− α2α1

2ν2y2
g1(y)

2u(y) = 0 (A8)

where the relation betweenu andg2 is such that ifu(y) is any solution to (A8), then one
can find a solution to (A7) by

g2(y) = −
[

du(y)

dy

]/[
u(y)

α2

νy

]
. (A9)

Equation (A8) can be transformed into a differential equation for hypergeometric functions
by the substitution

u(y) = yp(1− y)qh(y) (A10)

with the right choice ofp andq. The desired form is (Erd́elyi et al [9] equation (2.1.1))

y(1− y)d2h(y)

dy2
+ [c − (a + b + 1)y]

dh(y)

dy
− abh(y) = 0. (A11)

This obtained, we require

p(p − 1)+ 1+ ν
ν

p − α2α1λ
2
1

2ν2
= 0 (A12)

q(q − 1)− α2

2α1
= 0. (A13)
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We choose the solutions

p = − 1

2ν
(1+ [1+ 2α1α2λ

2
1]1/2) (A14)

q = 1

2
+ 1

2
[1+ 2α2/α1]1/2. (A15)

This leads to the following differential equation forh:

y(1− y)d2h(y)

dy2
+
[

2p(1− y)− 2qy + 1+ ν
ν

(1− y)
]

dh(y)

dy

−
[

2pq + 1+ ν
ν

q + α1α2

ν2
λ1(λ1− λ−1)

]
h(y) = 0. (A16)

Comparing with equation (A11) we obtain, using equation (A3),

c = 1− 1

ν

[
1+ α2

ν + 1

ν − 1

]1/2

(A17)

a + b = 2p + 2q + 1/ν = c + [1+ 2α2/α1]1/2 (A18)

ab = qc + α2λ1/ν (A19)

a

b

}
= 1

2
+ 1

2
[1+ 2α2/α1]1/2− 1

2ν

[
1+ α2

ν + 1

ν − 1

]1/2

± 1

2ν

[
1+ α2

ν − 1

ν + 1

]1/2

. (A20)

In general it is possible, but not necessary, that one or more of the numbersa, b, c, c − a
andc − b are integers. In order not to complicate the situation, we shall assume that none
of them are integers. In that case the full solution to (A16) can be written (Erdélyi et al [9]
equation (2.3.1))

h(y) = B1F(a, b; c; y)+ B2y
1−cF (a − c + 1, b − c + 1; 2− c; y) (A21)

whereB1 andB2 are two arbitrary constants. The derivative is given by (Erdélyi et al [9]
equation (2.1.7))

dh(y)

dy
= B1

ab

c
F (a + 1, b + 1; c + 1; y)+ B2(1− c)y−cF (a − c + 1, b − c + 1; 2− c; y)

+B2
(a − c + 1)(b − c + 1)

2− c y1−cF (a − c + 2, b − c + 2; 3− c; y). (A22)

Using equations (A6), (A9), (A10) andλ2 = −νp/α2 we obtain

γ2(x) = 1

x

[
λ2+ qν

α2

y

1− y −
ν

α2

y dh(y)/dy

h(y)

]
. (A23)

The ratioB1/B2 is fixed by the initial condition (9), using equation (A4) which implies that
x = 1/c0

1 corresponds toy = −A1. The behaviour fort → ∞ (or x → ∞) is according
to equation (A4) given by the behaviour fory → 0. The first term in (A23) is the term
expected from theorem 2. The second term goes to zero asx−ν and that will also be the
case for the third term ifc < 0 (unlessB1 = 0, which will make the third term decay faster
than the second term). Ifc > 0, then the third term goes to zero asx−ν2, whereν2 is given
by

ν2 = [1+ 2α1α2λ
2
1]1/2 (A24)

unlessB2 = 0 (in which case the decay asx−ν is retained). Ifc = 0, then the solution given
by equations (A21) and (A22) can no longer be used. A more detailed analysis (Erdélyi
et al [9] chapter 2; in particular, equations (2.3.6), (2.3.7), (2.1.7) and (2.3.2)) reveals that
the third term behaves asx−ν ln(x) (again with a possible exception caused by the initial
condition which could make the logarithmic term drop out).
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